

Aprobe:
A Framework
for Non-intrusive
Software Instrumentation

Oliver Cole
President and Founder
OC Systems, Inc.

Copyright © 2009 OC Systems, Inc. · All Rights Reserved www.ocsystems.com

An Overview of Aprobe Technology

© 2009 OC Systems Inc. All rights reserved. 2 www.ocsystems.com

Table of Contents

Instrumenting software applications ...3
Non-invasive, probe-based instrumentation ... 3
Write probes that are specific to your problem ... 4

How Aprobe works ..5
Writing your probes in C or Java... 5

Two sample probes... 6
Probes can do anything .. 6

Compiling and linking probes.. 7
Starting your application with Aprobe ... 8
Inserting probes into your application ... 8
Working with Java applications... 9
Reporting the logged data... 9
Calling the Aprobe API directly ... 10

How to find out more...10

About OC Systems ..10

Case Studies appear on the following pages:

Tracking down an elusive memory leak ... 4
Improving performance .. 6
Slashing time-to-market for a software vendor .. 7
Injecting faults to achieve comprehensive testing .. 8
Performing remote debugging at user sites .. 9

An Overview of Aprobe Technology

© 2009 OC Systems Inc. All rights reserved. 3 www.ocsystems.com

Instrumenting software applications
“Software instrumentation” usually refers to the chunks of code that developers insert in an
application to record the values of function parameters, timing statistics, and other
information necessary to debug and tune the application. These chunks of instrumentation
code are not meant to be part of the finished application: their purpose is to debug the
application, to find bottlenecks, and to solve similar problems.

Experienced development teams systematically add instrumentation code to their application
while the application is being designed and written. Compile-time flags keep the
instrumentation code out of the finished executables and support libraries. Run-time flags turn
specific software instruments on and off. But that code is not always sufficient to debug every
problem—particularly those issues that arise as a result of integration with other systems.

Adding software instrumentation to an application late in its development cycle can be quite
disruptive to a project. Adding new source code expands the size of the machine-code
libraries, which can cause transient problems to temporarily “disappear.” You may need to
create a separate build for instrumentation to allow groups of developers and testers to
troubleshoot while other groups continue their normal work. If so, you then need to keep the
two builds synchronized and do dual maintenance.

And if you are trying to solve a problem in a production system at a customer site, you may
have the near-impossible task of duplicating the customer’s production environment.

Aprobe technology provides a cleaner approach to software instrumentation.

Non-invasive, probe-based instrumentation
Aprobe is a patented software instrumentation framework that lets you add instrumentation in
the form of “probes” to applications. It is designed for applications in the post-development
environment but can be used in any stage of the software development lifecycle, from
development through production.

The source files of probes are not part of the application’s source files. The machine-language
version of probes resides in special-purpose libraries, not the application’s libraries. Aprobe
inserts calls to probes into your application at runtime, while the application is in memory.
The probes then execute as an integral part of the application.

You can access all parts of the application, including third-party code, shared libraries,
dynamic components, Java Virtual Machines, compilers, application servers, browsers, and so
on. The latest Aprobe version, Aprobe 5, even allows you to instrument the Linux Kernel!

Aprobe-based software instrumentation does not disrupt development projects or even
production systems running at your customer’s far-away site:

 You don’t need to change any of the application’s files stored on disk.

 You don’t need access to source or object code; Aprobe can work with the actual
delivered system software.

 You don’t need to recompile or rebuild the application.

 You don’t need to change how you start your application.

 With Aprobe 5, you don’t need to restart the application.

 You can enable or disable probes dynamically, in real time, as the application runs.

 You can log results to memory or memory-mapped disk, using Aprobe’s fast logging
routines (described later in this document). This means that your application will be
minimally slowed by the need to log results.

An Overview of Aprobe Technology

© 2009 OC Systems Inc. All rights reserved. 4 www.ocsystems.com

Aprobe is ideal for situations where your application is running in a production or production-
like test environment—especially if your application is interacting with third-party software
for which you do not have the source code.

Write probes that are specific to your problem
To use Aprobe, you need problem-specific probes written either in C or Java. Aprobe comes
with a standard set of probes that perform tasks such as tracing, timing, detecting memory
leaks, and logging data. You can use those probes right out of the box, modify them, or write
your own probes.

These probes must specify the data to be collected or define the changes to the program's
execution. If you are using C, the probes also specify where in the application these probes
will be inserted. (If you are using Java probes, you specify the location using XML.)

Aprobe compiles the probes into machine code (or, for Java, into byte code). These machine-
language probes are then inserted into the RAM image of the application, without modifying
any files of the application.

Because probes are written in the full C or Java language, they can do anything that you can
do in C or Java. You could write an entire application using probes. But, more likely, your
probes obtain and log crucial data about your application as it executes.

For example, you can obtain and log:

 Parameter values on entry to a function or method.

 Return values on exit.

 Values of any variables at any line (or offset) in the function.

 Data about objects, structures, queues, stacks, and other constructs.

 Data about memory allocation and de-allocation.

 Timing statistics of selected functions, methods, or transactions.

Probes can also alter the behavior of applications; for example, by triggering exceptions or
creating error conditions.

Probes can even add completely new functionality, such as integrating your application with a
commercial, off the shelf product with no SDK.

OC Systems has created RootCause, RTI (RootCause Transaction Instrumentation), and other
products on top of Aprobe. These software packages provide problem-specific solutions and a
graphical user interface to probes written with Aprobe.

Aprobe is also used by other software vendors to extend the power of their software—and
create new products—by writing probes specific to their application. It provides a powerful
and flexible way to collect data about the application’s execution, diagnose and repair
problems in the field, and facilitate integration with other systems.

C A S E S T U D Y

Tracking down an elusive
memory leak
Project: NERC (New En Route Centre) is a
major Air Traffic System for National Air Traffic
Services in Hampshire, England. NERC provides
en route air traffic control for all aircraft in UK
airspace: a system that demands the utmost in
reliability and response time.

Problem: NERC purchased a commercial X
server to support its workstations. But its
performance seemed sluggish. The X-server
vendor blamed the center’s in-house applications
for poor code. Caught in a classic finger-pointing
scenario, the developers needed to pinpoint the
actual cause of the slowdown.

Solution: NERC’s developers used Aprobe to
verify how well the X server was operating. Their
probes quickly revealed that the X server was
spending 90 per cent of its time in an inefficient
buffer allocate and de-allocate routine. Further
probes showed that the buffers maintained by
the vendor's X server were terribly fragmented.

OC Systems consultants wrote probes to replace
the vendor’s faulty buffer routine with a much
cleaner one. CPU usage went down dramatically:
the problem was fixed. NERC supplied the X-
server vendor with indisputable evidence of the
problem and the code to fix it. The vendor was
able to repair the problem and incorporate the fix
into their next build.

Remarks: NERC’s developers left the probes
in their system to fix the problem until they
installed the new X server. Aprobe helped them
move beyond finger-pointing to identifying and
resolving the actual problem. Without access to
source code, they were able to track down and
fix a serious issue in commercial off-the-shelf
software.

An Overview of Aprobe Technology

© 2009 OC Systems Inc. All rights reserved. 5 www.ocsystems.com

How Aprobe works
To use Aprobe, you must install it on the machine that is running the application that needs
instrumentation.

Aprobe intercepts the application after it is loaded into memory, but before it starts. It then
inserts calls to your probes into the application’s image in memory. The calls are inserted at
locations that you specify.

Aprobe never modifies the application’s source files, executable files, or byte code files.

Writing your probes in C or Java
You can write your probes either in ANSI C (augmented by Aprobe directives) or in Java. In
both cases, you can use the entire language: probes can open windows, read and write from
sockets, call functions in the application directly, change the contents of buffers, get and set
properties, trigger exceptions or error conditions, gather timing statistics, start threads and
processes, and so forth.

An Overview of Aprobe Technology

© 2009 OC Systems Inc. All rights reserved. 6 www.ocsystems.com

Two sample probes
Below are two sample probes written in C:

 The application-specific probe thread counts the number of times that a function is
called.

 The application-specific probe main logs the count for later processing.

The application (not shown) is a Fibonacci number generator.1

probe thread
{
 int NumFibCalls = 0;

 probe "fib"
 {
 on_entry
 {
 NumFibCalls++;
 }
 }

 probe "main"
 {
 on_exit
 {
 log("For NumIterations = ", $NumIterations);
 log("the number of calls to fib = ",
 NumFibCalls);
 }
 }
}

Note: $NumIterations refers to the variable NumIterations in the Fibonacci
application. Aprobe can reference application data using the identifier that was used in the
original application source code.

Probes can do anything
Because probes are written in C or Java, you can write probes to do anything that these
languages can do, including calling functions in your own application, calling functions in
third-party applications or shared applications—even examining and modifying the
computer’s registers.

This means you can examine or change the contents of buffers, get and set properties, trigger
exceptions or error conditions, gather timing statistics, start threads and processes, and so
forth.

Probes are normally small, but nothing stops you from making them large enough to add
completely new functionality.

1 The Fibonacci numbers are a series of numbers starting with 1, 1; all subsequent numbers in the series
are generated by adding the two previous numbers. The first seven numbers are 1, 1, 2, 3, 5, 8, and 13.
Writing a Fibonacci number generator is a programming problem familiar to several generations of
computer science students.

C A S E S T U D Y

Improving performance
Project: A multi-year, multi-billion-dollar project
designed to create a Web-enabled system to
process goods being imported into the USA.

Problem: Halfway through the schedule, bad
news. The system could not handle the high
throughput required. The development team had
to do the impossible: improve performance at the
same time as they coded the next release.

Solution: The project's prime contractor
turned to OC Systems for help. OCS consultants
took full responsibility for solving the perfor-
mance problem. Using Aprobe-based perfor-
mance tools, they integrated performance testing
with the development project’s daily regression
testing, so no special performance testbed was
needed: they were even able to use the project’s
change request process.

Aprobe allowed the consultants to be extremely
specific in providing change requests; they even
prototyped the recommended changes, then
used Aprobe to try them out. The change
requests were implemented as a matter of
course during ongoing development. The system
became faster and faster day by day, and the
performance problem slowly disappeared.

Remarks: The flexibility of the Aprobe tech-
nology was key, since the development code
was a complicated system that also included a
lot of debugging code (which was to be removed
in the final system).

In order to collect accurate performance data, the
consultants had to turn off this sluggish
debugging code. They used Aprobe to turn off
the debugging code as well as to gather
performance data. This allowed the system to go
from debug mode to production mode with the
flip of a software switch.

Because no separate performance testbed was
required, the project saved $3 million. Even
though performance tests were being run on the
development system, this had no real impact on
development efforts. All performance tests ran on
the most recent build, so developers could work
concurrently on improving performance and
implementing new modules. No changes were
needed to the existing test suite. Nor did any
testers need to be retrained.

An Overview of Aprobe Technology

© 2009 OC Systems Inc. All rights reserved. 7 www.ocsystems.com

Compiling and linking probes
The C code for a probe contains several non-ANSI directives, such as:

 probe, on_entry, on_exit, on_line and on_offset, which specify where in
the application the probe will be inserted.

 log, which logs data to buffers and/or log files.

 $return, $myParm1, $myParm2, $$EAX, and others which refer to return values,
positional parameters, registers, and so forth. (The prepended “$” is followed by the
identifier for functions, variables, and parameters in the target application.)

These directives are processed by apc, the Aprobe preprocessor for C. apc automatically
generates pure ANSI C functions, and translates the directives to calls to the Aprobe API from
your probes.

Your probes (now in the form of ANSI C functions) are then compiled by a standard C
compiler, linked, and stored in a library called the User Action Library (UAL file).

The UAL file is implemented as a DLL on Windows and as a shared library on Unix/Linux.

In effect, the one or more probes (patches) that you write in C are translated into a shared
library. That shared library contains not only the probes, but code that specifies where in the
application to insert each probe.

For example, in the Fibonacci probes listed earlier in this document:

probe "fib" // Insert the probe into function fib...
{
 on_entry // ...at the first instruction.
 {
 NumFibCalls++; // This is the actual probe to be inserted.
 }
}

C A S E S T U D Y

Slashing time-to-market for a
software vendor
Project: A major embedded operating system
vendor wanted to extend its toolset by providing
enhanced management capabilities, including
rapid diagnostics and repair capabilities for
running software.

Problem: Time-to-market was critical. The
vendor had the ability to build its own
instrumentation in-house, but wanted to launch
the new capabilities as quickly as possible. The
company also needed to ensure that its solution
would have comprehensive functionality, high
levels of reliability and full scalability.

Solution: After an exhaustive search of
instrumentation technologies and tools, upper-
level management made the decision to partner
with OC Systems.

OCS ported Aprobe to the vendor’s operating
system, customizing it to work in their Eclipse-
based development environment. OCS worked
with the vendor to define and deliver the proper
sets of instrumentation that would support their
product’s value proposition.

Remarks: The vendor obtained a source-code
license with full intellectual property rights. The
two companies shared the risk of the project
through royalty-based payments.
The project was delivered successfully, allowing
the vendor to shave more than 30% off the
schedule and get to market quickly with a proven
instrumentation solution.

An Overview of Aprobe Technology

© 2009 OC Systems Inc. All rights reserved. 8 www.ocsystems.com

Starting your application with Aprobe
Aprobe intercepts your application after it has been loaded into memory and before it starts
executing. Under Windows, we use a device driver to implement this. Under Unix/Linux, we
use features in the loader to get control each time a new process is created.

Or you can execute the aprobe command directly from the command line:

aprobe -u your_UAL_file.dll your_application

The above aprobe command will:

 Load your application into memory.

 Insert (into the memory-resident application) calls to the probes stored in your UAL file.

Then aprobe “goes away” and your application runs normally—except that it executes calls
to the probes.

The aprobe command syntax allows you to specify parameters for your application,
parameters for your UAL file, the number and size of Aprobe’s log files, and so forth.

Inserting probes into your application
The apc command translates each C-based probe into an ANSI C function. For example, in
the Fibonacci probe earlier in this document, apc generates a C function that implements the
body of the probe for function fib, compiles it with your C compiler, and stores the resulting
machine-language function in a User Action Library (that is, in a DLL or shared library).

probe "fib" // This directive and
{
 on_entry // ...this directive specify where to insert CALL.
 {
 NumFibCalls++; // Body of probe is converted to ANSI C function.
 // C function is compiled into a machine-code
 // function that is the target of the CALL.
 }
}

When your application is loaded into memory, but before it executes, Aprobe inserts the
machine-language equivalent of CALL statements into the locations specified by the probes
that you wrote.

Each machine language CALL executes the body of the probe by calling the machine-
language function that was previously compiled-and-linked from the probe’s source code.

What happens to the instruction that we replaced with the CALL instruction? It becomes the
last (or almost the last) instruction at the end of the C function.

Because Aprobe uses function calls, the size of your application does not increase.

C A S E S T U D Y

Injecting faults to achieve
comprehensive testing
Project: To achieve an extremely high level of
software quality, the U.S. Federal Aviation
Administration (FAA) requires the testing of
thousands of modules created by different
development teams.

Problem: To fully test an application, it must
be tested under all possible conditions, including
error conditions. But simulating errors like a disk
offline or a disk broken can be difficult. The
typical approach is to modify the source code
temporarily before testing. However, this is so
labor-intensive it is most often only done once.
For this project, the FAA wanted a higher level of
quality assurance, and asked the contractor to
find a way to test many different error conditions.

Solution: The contractor chose Aprobe
technology, since it can “spoof” a system to
believe that any error has already occurred.
Sometimes this involved using Aprobe to stub
out the execution of specified methods and to
return an error code instead. In other cases, the
contractor used Aprobe to throw an exception.
No application changes were necessary for these
error tests. The fault injection process was so
straightforward that it was added to the regres-
sion testing process and run on every build.

Remarks: Aprobe allowed the contractor to
achieve comprehensive error testing. The quality
of the final code was demonstrably improved.

An Overview of Aprobe Technology

© 2009 OC Systems Inc. All rights reserved. 9 www.ocsystems.com

Working with Java applications
If your application is written in Java, then so are your probes. The process of writing and
deploying Java probes is essentially the same as with C probes. The most important
differences are:

 You create Java probes by extending a class supplied with Aprobe.

 You must write XML-based deployment descriptors that specify the methods to be
probed. Here is an example:

<probe_deployment>
 <probe class="YourProbe"> // name of the probe.
 <target value="YourClass::yourMethod()"> // name of the method
 // to be probed.
 </probe>
</probe_deployment>

Reporting the logged data
Probes usually report results by logging data. Aprobe provides the log directive to support
logging. For example:

log("For NumIterations = ", $NumIterations);
log("the number of calls to fib = ", NumFibCalls);

Aprobe uses sophisticated logging mechanisms that provide very fast logging:

 All logging is done at full memory speed: Aprobe memory-maps the log files.

 You can configure the maximum size and number of log files.

 You can configure whether the log files will wrap.2

 We use a fast algorithm to prevent multiple threads from simultaneously accessing the
logging code.3

 Logged data is stored in a proprietary binary format for performance reasons. You can
use the apformat command to convert the binary data to ASCII. If necessary, you can
then also use grep, perl, or third-party reporting software to further manipulate the logged
data.

2 If wrapping is enabled, logging can continue even after the maximum size of the log file is reached: the
newest logged data replaces the oldest logged data in the log file.
3 All of Aprobe is “thread-safe.” That means that Aprobe’s logging code (and all other parts of Aprobe)
cannot be executed simultaneously by multiple threads. But we do not use thread locks (blocking
algorithms) to protect data. Instead, we have carefully designed all of our stacks, queues, and other
abstract data types to use faster, non-blocking algorithms (implemented using the CompareAndSwap
machine instruction).

C A S E S T U D Y

Performing remote debugging at
user sites
Project: A major contractor created a widely-
distributed system for the U.S. Department of
Defense designed to assess military readiness
for a variety of emergency situations.

Problem: To remain effective, this system
needed close to 100 percent uptime. But the
budget wouldn’t cover flying senior support
engineers to multiple sites to track down every
bug that appeared during operational test.

Solution: The contractor was already using
Aprobe technology to find bugs in its integration
testing lab. They soon realized its power could
be extended to remote debugging.

Probes were defined by the contractor in the
contractor’s test lab, then sent by e-mail or ftp to
user sites. A technician at each site loaded the
probes into the Aprobe directory. As the
application ran, trace data was logged. The trace
captured code-level, system-level and
hardware/software configuration details,
minimizing the data each site had to supply
manually.

At any point, the trace data could be e-mailed
back to support staff, who would step through the
trace. This helped them zero in on bugs quickly.

They would also use Aprobe to create a
temporary patch to test a fix. When the fix
worked, it could be left in place until the next
build was ready.

Remarks: The contractor was able to debug
the problem in the customer’s environment with-
out burdening the customer. Doing remote
debugging avoided the high cost and delays of
sending senior support staff to perform on-site
troubleshooting. The probes had virtually no
impact on system performance, so they could be
safely left in the system should they be needed
for future debugging. These application-specific
probes are being used throughout the life of the
military system to ensure rapid time-to-resolution
of any issues.

An Overview of Aprobe Technology

© 2009 OC Systems Inc. All rights reserved. 10 www.ocsystems.com

Calling the Aprobe API directly
As explained earlier, the apc command translates Aprobe directives into calls to the Aprobe
API. You probably won’t need to call the Aprobe API directly. But if you do, the API is fully
documented (and available at www.ocsystems.com).

The API allows you to manipulate module IDs, manipulate function line numbers and code
offsets, obtain tracebacks, manage threads and processes, insert probes, manage the logs,
manage the UAL files, and inject numerous other useful utilities for software instrumentation.

There are separate APIs for Java and for C.

How to find out more
To learn more about Aprobe, go to www.ocsystems.com, where you will find more
information, sample probes and full documentation for Aprobe. You can also arrange a
personalized online demo over the Internet.

Or you can contact me, Oliver Cole, directly at +1 (703) 359-8160, or oec@ocsystems.com.

About OC Systems
OC Systems provides software tools, development environments, and services that help
organizations maximize software quality and application availability for critical applications.

Founded in 1983, OC Systems originally developed compilers and other custom solutions for
its clients.

In the mid-1990s, OC Systems evolved into a products company, first offering an integrated
Ada development environment called PowerAda. Then it introduced Aprobe, the software
instrumentation technology addressed in this white paper.

In 2001, the company launched RootCause, an application internals management tool that
runs on top of Aprobe.

The RootCause Transaction Instrumentation (RTI) family of products provides accurate
measures of response time for actual end-user transactions. The first RTI product was
introduced in 2007. RTI for Internet Explorer delivers transaction response time for
transactions that begin in the browser. RTI for ITCAM, launched in 2009, extends IBM’s
ITCAM RTT product for monitoring past the edge of the enterprise, all the way to the end
user.

Clients include Lockheed Martin, IBM, Intel, SAIC, Sandia National Laboratories, Sun
Microsystems, the U.S. Army, Northrop Grumman, Unisys, and SAS.

