A.5.2 Random Number Generation

From OC Systems Wiki!
Jump to: navigation, search

Facilities for the generation of pseudo-random floating point numbers are provided in the package Numerics.Float_Random; the generic package Numerics.Discrete_Random provides similar facilities for the generation of pseudo-random integers and pseudo-random values of enumeration types. For brevity, pseudo-random values of any of these types are called random numbers.

Some of the facilities provided are basic to all applications of random numbers. These include a limited private type each of whose objects serves as the generator of a (possibly distinct) sequence of random numbers; a function to obtain the next random number from a given sequence of random numbers (that is, from its generator); and subprograms to initialize or reinitialize a given generator to a time-dependent state or a state denoted by a single integer.

Other facilities are provided specifically for advanced applications. These include subprograms to save and restore the state of a given generator; a private type whose objects can be used to hold the saved state of a generator; and subprograms to obtain a string representation of a given generator state, or, given such a string representation, the corresponding state.

Static Semantics

The library package Numerics.Float_Random has the following declaration:

package Ada.Numerics.Float_Random is

    -- Basic facilities

    type Generator is limited private;

    subtype Uniformly_Distributed is Float range 0.0 .. 1.0; 
    function Random (Gen Generator) return Uniformly_Distributed;

    procedure Reset (Gen       in Generator;
                     Initiator in Integer);
    procedure Reset (Gen       in Generator);

    -- Advanced facilities

    type State is private;

    procedure Save  (Gen        in  Generator;
                     To_State   out State); 
    procedure Reset (Gen        in  Generator;
                     From_State in  State);

    Max_Image_Width : constant := implementation-defined integer value;

    function Image (Of_State    State)  return String; 
    function Value (Coded_State String) return State;

private
    ... -- not specified by the language
end Ada.Numerics.Float_Random;

The generic library package Numerics.Discrete_Random has the following declaration:

generic  
    type Result_Subtype is (<>);
package Ada.Numerics.Discrete_Random is

    -- Basic facilities

    type Generator is limited private;

    function Random (Gen Generator) return Result_Subtype;

    procedure Reset (Gen       in Generator;
                     Initiator in Integer); 
    procedure Reset (Gen       in Generator);

    -- Advanced facilities

    type State is private;

    procedure Save  (Gen        in  Generator;
                     To_State   out State); 
    procedure Reset (Gen        in  Generator;
                     From_State in  State);

    Max_Image_Width : constant := implementation-defined integer value;

    function Image (Of_State    State)  return String; 
    function Value (Coded_State String) return State;

private
    ... -- not specified by the language
end Ada.Numerics.Discrete_Random;

An object of the limited private type Generator is associated with a sequence of random numbers. Each generator has a hidden (internal) state, which the operations on generators use to determine the position in the associated sequence. All generators are implicitly initialized to an unspecified state that does not vary from one program execution to another; they may also be explicitly initialized, or reinitialized, to a time-dependent state, to a previously saved state, or to a state uniquely denoted by an integer value.

An object of the private type State can be used to hold the internal state of a generator. Such objects are only needed if the application is designed to save and restore generator states or to examine or manufacture them.

The operations on generators affect the state and therefore the future values of the associated sequence. The semantics of the operations on generators and states are defined below.

function Random (Gen Generator) return Uniformly_Distributed;
function Random (Gen Generator) return Result_Subtype;

Obtains the next random number from the given generator, relative to its current state, according to an implementation-defined algorithm. The result of the function in Numerics.Float_Random is delivered as a value of the subtype Uniformly_Distributed, which is a subtype of the predefined type Float having a range of 0.0 .. 1.0. The result of the function in an instantiation of Numerics.Discrete_Random is delivered as a value of the generic formal subtype Result_Subtype.

procedure Reset (Gen       in Generator; 
                 Initiator in Integer);
procedure Reset (Gen       in Generator);

Sets the state of the specified generator to one that is an unspecified function of the value of the parameter Initiator (or to a time-dependent state, if only a generator parameter is specified). The latter form of the procedure is known as the time-dependent Reset procedure.

procedure Save  (Gen        in  Generator; 
                 To_State   out State);
procedure Reset (Gen        in  Generator;
                 From_State in  State);

Save obtains the current state of a generator. Reset gives a generator the specified state. A generator that is reset to a state previously obtained by invoking Save is restored to the state it had when Save was invoked.

function Image (Of_State    State)  return String;
function Value (Coded_State String) return State;

Image provides a representation of a state coded (in an implementation-defined way) as a string whose length is bounded by the value of Max_Image_Width. Value is the inverse of Image: Value(Image(S)) = S for each state S that can be obtained from a generator by invoking Save.

Dynamic Semantics

Instantiation of Numerics.Discrete_Random with a subtype having a null range raises Constraint_Error.

This paragraph was deleted.

Bounded (Run-Time) Errors

It is a bounded error to invoke Value with a string that is not the image of any generator state. If the error is detected, Constraint_Error or Program_Error is raised. Otherwise, a call to Reset with the resulting state will produce a generator such that calls to Random with this generator will produce a sequence of values of the appropriate subtype, but which might not be random in character. That is, the sequence of values might not fulfill the implementation requirements of this subclause.

Implementation Requirements

A sufficiently long sequence of random numbers obtained by successive calls to Random is approximately uniformly distributed over the range of the result subtype.

The Random function in an instantiation of Numerics.Discrete_Random is guaranteed to yield each value in its result subtype in a finite number of calls, provided that the number of such values does not exceed 2 15.

Other performance requirements for the random number generator, which apply only in implementations conforming to the Numerics Annex, and then only in the strict mode defined there (see G.2), are given in G.2.5.

Documentation Requirements

No one algorithm for random number generation is best for all applications. To enable the user to determine the suitability of the random number generators for the intended application, the implementation shall describe the algorithm used and shall give its period, if known exactly, or a lower bound on the period, if the exact period is unknown. Periods that are so long that the periodicity is unobservable in practice can be described in such terms, without giving a numerical bound.

The implementation also shall document the minimum time interval between calls to the time-dependent Reset procedure that are guaranteed to initiate different sequences, and it shall document the nature of the strings that Value will accept without raising Constraint_Error.

Implementation Advice

Any storage associated with an object of type Generator should be reclaimed on exit from the scope of the object.

If the generator period is sufficiently long in relation to the number of distinct initiator values, then each possible value of Initiator passed to Reset should initiate a sequence of random numbers that does not, in a practical sense, overlap the sequence initiated by any other value. If this is not possible, then the mapping between initiator values and generator states should be a rapidly varying function of the initiator value.

Notes

14  If two or more tasks are to share the same generator, then the tasks have to synchronize their access to the generator as for any shared variable (see 9.10).

15  Within a given implementation, a repeatable random number sequence can be obtained by relying on the implicit initialization of generators or by explicitly initializing a generator with a repeatable initiator value. Different sequences of random numbers can be obtained from a given generator in different program executions by explicitly initializing the generator to a time-dependent state.

16  A given implementation of the Random function in Numerics.Float_Random may or may not be capable of delivering the values 0.0 or 1.0. Portable applications should assume that these values, or values sufficiently close to them to behave indistinguishably from them, can occur. If a sequence of random integers from some fixed range is needed, the application should use the Random function in an appropriate instantiation of Numerics.Discrete_Random, rather than transforming the result of the Random function in Numerics.Float_Random. However, some applications with unusual requirements, such as for a sequence of random integers each drawn from a different range, will find it more convenient to transform the result of the floating point Random function. For M >= 1, the expression

    Integer(Float(M) * Random(G)) mod M

transforms the result of Random(G) to an integer uniformly distributed over the range 0 .. M-1; it is valid even if Random delivers 0.0 or 1.0. Each value of the result range is possible, provided that M is not too large. Exponentially distributed (floating point) random numbers with mean and standard deviation 1.0 can be obtained by the transformation

    -Log(Random(G) + Float'Model_Small))

where Log comes from Numerics.Elementary_Functions (see A.5.1); in this expression, the addition of Float'Model_Small avoids the exception that would be raised were Log to be given the value zero, without affecting the result (in most implementations) when Random returns a nonzero value.

Examples

Example of a program that plays a simulated dice game:

with Ada.Numerics.Discrete_Random;
procedure Dice_Game is
    subtype Die is Integer range 1 .. 6; 
    subtype Dice is Integer range 2*Die'First .. 2*Die'Last; 
    package Random_Die is new Ada.Numerics.Discrete_Random (Die);
    use Random_Die;
    G : Generator;
    D : Dice;
begin 
    Reset (G);  -- Start the generator in a unique state in each run 
    loop
        -- Roll a pair of dice; sum and process the results    
        D := Random(G) + Random(G);
        ... 
    end loop;
end Dice_Game;

Example of a program that simulates coin tosses:

with Ada.Numerics.Discrete_Random;
procedure Flip_A_Coin is 
    type Coin is (Heads, Tails); 
    package Random_Coin is new Ada.Numerics.Discrete_Random (Coin);
    use Random_Coin;
    G : Generator;
begin 
    Reset (G);  -- Start the generator in a unique state in each run 
       loop
           -- Toss a coin and process the result
           case Random(G) is
               when Heads =>
                   ...
               when Tails =>
                   ...    
           end case; 
       ... 
       end loop;
end Flip_A_Coin;

Example of a parallel simulation of a physical system, with a separate generator of event probabilities in each task:

with Ada.Numerics.Float_Random;
procedure Parallel_Simulation is 
   use Ada.Numerics.Float_Random; 
   task type Worker is 
       entry Initialize_Generator (Initiator in Integer); 
       ...
   end Worker;
   W : array (1 .. 10) of Worker;
   task body Worker is
        G : Generator;
        Probability_Of_Event : Uniformly_Distributed;
   begin
        accept Initialize_Generator (Initiator : in Integer) do
            Reset (G, Initiator);
        end Initialize_Generator;
        loop
            ...
            Probability_Of_Event := Random(G);
            ...
        end loop; 
    end Worker;
begin
   -- Initialize the generators in the Worker tasks to different states 
    for I in W'Range loop
        W(I).Initialize_Generator (I);
    end loop; 
    ... -- Wait for the Worker tasks to terminate
end Parallel_Simulation;

Notes

17  Notes on the last example: Although each Worker task initializes its generator to a different state, those states will be the same in every execution of the program. The generator states can be initialized uniquely in each program execution by instantiating Ada.Numerics.Discrete_Random for the type Integer in the main procedure, resetting the generator obtained from that instance to a time-dependent state, and then using random integers obtained from that generator to initialize the generators in each Worker task.

Copyright © 1992,1993,1994,1995 Intermetrics, Inc.
Copyright © 2000 The MITRE Corporation, Inc. Ada Reference Manual